Funkcje trygonometryczne podwojonego kąta \[\begin{split}&\\&\sin{2\alpha }=2\sin{\alpha }\cos{\alpha }=\frac{2\ \text{tg}{\alpha }}{1 +\text{tg}^2{\alpha $\begingroup$ Remember that $\cos^2(x)+\sin^2(x)=1$ by the pythagorean theorem. So, $\cos^2(x)-\sin^2(x)=\cos^2(x)-\sin^2(x)+1-1 = \cos^2(x)-\sin^2(x)+\cos^2(x)+\sin^2(x)-1=\dots$ Remember you can always "add zero" or "multiply by one" and it won't change anything. The trick is what "zero" or "one" look like in your specific situation. $\endgroup$ Following on Trevor's comment. Transform Y=Y(t) into a parametric equation. Then apply trigonometry and calculus to get the solution. In the simplest case Y = t^2, the parametric equation is lim x→0 cos(2x) 1 x lim x → 0 cos ( 2 x) 1 x. Use the properties of logarithms to simplify the limit. Tap for more steps lim x→0e1 xln(cos(2x)) lim x → 0 e 1 x ln ( cos ( 2 x)) Evaluate the limit. Tap for more steps elim x→0 ln(cos(2x)) x e lim x → 0 ln ( cos ( 2 x)) x. Apply L'Hospital's rule. On a toujours besoin d'une fiche avec l'ensemble des formules, et c'est pourquoi nous vous avons préparé un rappel complet sur les formulaires de trigonométrie, avec au programme : Les relations fondamentales. Les transformations remarquables. Les angles remarquables. Les équations trigonométriques. Les formules d'addition. Dịch Vụ Hỗ Trợ Vay Tiền Nhanh 1s. Explanation: #"since "cosx>0# #"then x will be in the first/fourth quadrants"# #cosx=1/2# #rArrx=cos^-1(1/2)=pi/3larrcolor(blue)" angle in first quadrant"# #"or "x=(2pi-pi/3)=(5pi)/3larrcolor(blue)" angle in fourth quadrant"# Let x = tan θ. Then, θ = tan−1 x. `:. sin^(-1) (2x)/(1+x^2 ) = sin^(-1) ((2tan theta)/(1 + tan^2 theta)) = sin^(-1) (sin 2 theta) = 2theta = 2 tan^(-1) x` Let y = tan Φ. Then, Φ = tan−1 y. `:. cos^(-1) (1 - y^2)/(1+ y^2) = cos^(-1) ((1 - tan^2 phi)/(1+tan^2 phi)) = cos^(-1)(cos 2phi) = 2phi = 2 tan^(-1) y` `:. tan 1/2 [sin^(-1) "2x"/(1+x^2) + cos^(-1) (1-y^2)/(1+y^2)]` `= tan 1/2 [2tan^(-1) x + 2tan^(-1) y]` `= tan[tan^(-1) x + tan^(-1) y]` `= tan[tan^(-1) ((x+y)/(1-xy))]` `= (x+y)/(1-xy)` \bold{\mathrm{Basic}} \bold{\alpha\beta\gamma} \bold{\mathrm{AB\Gamma}} \bold{\sin\cos} \bold{\ge\div\rightarrow} \bold{\overline{x}\space\mathbb{C}\forall} \bold{\sum\space\int\space\product} \bold{\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}} \bold{H_{2}O} \square^{2} x^{\square} \sqrt{\square} \nthroot[\msquare]{\square} \frac{\msquare}{\msquare} \log_{\msquare} \pi \theta \infty \int \frac{d}{dx} \ge \le \cdot \div x^{\circ} (\square) |\square| (f\:\circ\:g) f(x) \ln e^{\square} \left(\square\right)^{'} \frac{\partial}{\partial x} \int_{\msquare}^{\msquare} \lim \sum \sin \cos \tan \cot \csc \sec \alpha \beta \gamma \delta \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega A B \Gamma \Delta E Z H \Theta K \Lambda M N \Xi \Pi P \Sigma T \Upsilon \Phi X \Psi \Omega \sin \cos \tan \cot \sec \csc \sinh \cosh \tanh \coth \sech \arcsin \arccos \arctan \arccot \arcsec \arccsc \arcsinh \arccosh \arctanh \arccoth \arcsech \begin{cases}\square\\\square\end{cases} \begin{cases}\square\\\square\\\square\end{cases} = \ne \div \cdot \times \le \ge (\square) [\square] ▭\:\longdivision{▭} \times \twostack{▭}{▭} + \twostack{▭}{▭} - \twostack{▭}{▭} \square! x^{\circ} \rightarrow \lfloor\square\rfloor \lceil\square\rceil \overline{\square} \vec{\square} \in \forall \notin \exist \mathbb{R} \mathbb{C} \mathbb{N} \mathbb{Z} \emptyset \vee \wedge \neg \oplus \cap \cup \square^{c} \subset \subsete \superset \supersete \int \int\int \int\int\int \int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square}\int_{\square}^{\square} \sum \prod \lim \lim _{x\to \infty } \lim _{x\to 0+} \lim _{x\to 0-} \frac{d}{dx} \frac{d^2}{dx^2} \left(\square\right)^{'} \left(\square\right)^{''} \frac{\partial}{\partial x} (2\times2) (2\times3) (3\times3) (3\times2) (4\times2) (4\times3) (4\times4) (3\times4) (2\times4) (5\times5) (1\times2) (1\times3) (1\times4) (1\times5) (1\times6) (2\times1) (3\times1) (4\times1) (5\times1) (6\times1) (7\times1) \mathrm{Radians} \mathrm{Degrees} \square! ( ) % \mathrm{clear} \arcsin \sin \sqrt{\square} 7 8 9 \div \arccos \cos \ln 4 5 6 \times \arctan \tan \log 1 2 3 - \pi e x^{\square} 0 . \bold{=} + Related » Graph » Number Line » Similar » Examples » Our online expert tutors can answer this problem Get step-by-step solutions from expert tutors as fast as 15-30 minutes. Your first 5 questions are on us! You are being redirected to Course Hero I want to submit the same problem to Course Hero Correct Answer :) Let's Try Again :( Try to further simplify Number Line Graph Hide Plot » Sorry, your browser does not support this application Examples \sin (x)+\sin (\frac{x}{2})=0,\:0\le \:x\le \:2\pi \cos (x)-\sin (x)=0 \sin (4\theta)-\frac{\sqrt{3}}{2}=0,\:\forall 0\le\theta<2\pi 2\sin ^2(x)+3=7\sin (x),\:x\in[0,\:2\pi ] 3\tan ^3(A)-\tan (A)=0,\:A\in \:[0,\:360] 2\cos ^2(x)-\sqrt{3}\cos (x)=0,\:0^{\circ \:}\lt x\lt 360^{\circ \:} trigonometric-equation-calculator cos^{2}x+2cosx+1=0 en Cho hình chóp có ABCD là hình vuông tâm O, cạnh a SA vuông góc với mặt phẳng (ABCD) và SA=(asqrt{2}). Tính khoảng cách từ C đến mặt phẳng (SAB) Cho hình chóp có ABCD là hình vuông tâm O, cạnh a SA vuông góc với mặt phẳng (ABCD) và SA=a Tính khoảng cách từ: a) C đến mặt phẳng (SAB). b) từ A đến (SCD). c) Từ O đến (SCD). d) Khoảng cách giữa hai đường thẳng AB và SC. 19/05/2022 | 0 Trả lời Cho hình chóp có ABCD là hình vuông tâm O, cạnh a SA vuông góc với mặt phẳng (ABCD) và SA=a căn 2. Tính khoảng cách từ C đến mặt phẳng (SAB). Cho hình chóp có ABCD là hình vuông tâm O, cạnh a SA vuông góc với mặt phẳng (ABCD) và SA=a căn 2. Tính khoảng cách từ: a) C đến mặt phẳng (SAB). b) từ A đến (SCD). c) Từ O đến (SCD). d) Khoảng cách giữa hai đường thẳng AB và SC. 19/05/2022 | 0 Trả lời Cho hình hộp chữ nhật có đáy ABCD là hình vuông cạnh a√2, AA' =2a. Chứng minh (A'BD) ⊥ (AA'C'C). Cho hình hộp chữ nhật có đáy ABCD là hình vuông cạnh a√2, AA' =2a. 1. Chứng minh (A'BD) ⊥ (AA'C'C). 2. Xác định góc giữa đường thẳng A'C với mặt phẳng (ABCD). 3. Tính khoảng cách từ điểm A đến mặt phẳng (A'BD). 20/05/2022 | 0 Trả lời Giả sử rằng 1000 học sinh đang đứng trong một vòng tròn. Chứng minh rằng tồn tại số nguyên k với 100 ≤ k ≤ 300 sao cho trong vòng tròn này tồn tại một nhóm 2k học sinh liền kề nhau, mà nửa đầu chứa số bé gái bằng nửa sau. Giả sử rằng 1000 học sinh đang đứng trong một vòng tròn. Chứng minh rằng tồn tại số nguyên k với 100 ≤ k ≤ 300 sao cho trong vòng tròn này tồn tại một nhóm 2k học sinh liền kề nhau, mà nửa đầu chứa số bé gái bằng nửa sau. 04/06/2022 | 0 Trả lời $\begingroup$ Why: $$\cos ^2(2x) = \frac{1}{2}(1+\cos (4x))$$ I don't understand this, how I must to multiply two trigonometric functions? Thanks a lot. asked Oct 28, 2012 at 1:54 $\endgroup$ 2 $\begingroup$ Recall the formula $$\cos(2 \theta) = 2 \cos^2(\theta) - 1$$ This gives us $$\cos^2(\theta) = \dfrac{1+\cos(2 \theta)}{2}$$ Plug in $\theta = 2x$, to get what you want. EDIT The identity $$\cos(2 \theta) = 2 \cos^2(\theta) - 1$$ can be derived from $$\cos(A+B) = \cos(A) \cos(B) - \sin(A) \sin(B)$$ Setting $A = B = \theta$, we get that $$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = \cos^2(\theta) - (1-\cos^2(\theta)) = 2 \cos^2(\theta) - 1$$ answered Oct 28, 2012 at 1:56 $\endgroup$ 1 $\begingroup$It’s just the double-angle formula for the cosine: for any angle $\alpha$, $\cos 2\alpha=\cos^2\alpha-\sin^2\alpha\;,$ and since $\sin^2\alpha=1-\cos^\alpha$, this can also be written $\cos2\alpha=2\cos^2\alpha-1$. Now let $\alpha=2x$: you get $\cos4x=2\cos^22x-1$, so $\cos^22x=\frac12(\cos4x+1)$. answered Oct 28, 2012 at 1:57 Brian M. ScottBrian M. Scott590k52 gold badges711 silver badges1179 bronze badges $\endgroup$ 1 $\begingroup$$$\cos(4x) = \cos^2 (2x) - \sin^2 (2x) = 2\cos^2 (2x) - 1$$ answered Oct 28, 2012 at 1:57 InquestInquest6,4472 gold badges32 silver badges56 bronze badges $\endgroup$ 0 Not the answer you're looking for? Browse other questions tagged algebra-precalculus trigonometry or ask your own question.

cos 2x 1 2